List of Probability and Statistics Symbols | Math Vault (2024)

Probability and statistics correspond to the mathematical study of chance and data, respectively. The following reference list documents some of the most notable symbols in these two topics, along with each symbol’s usage and meaning.

For readability purpose, these symbols are categorized by function into tables. Other comprehensive lists of math symbols — as categorized by subjectand type — can be also found in the relevant pages below (or in the navigational panel).

Table of Contents

List of Probability and Statistics Symbols | Math Vault (1)

Prefer the PDF version instead?

Get the master summary of mathematical symbols in eBook form — along with each symbol’s usage and LaTeX code.

Yes. That’d be useful.

Variables

Probability and statistics both employ a wide range of Greek/Latin-based symbols as placeholders for varying objects and quantities. The following table documents the most common of these — along with each symbol’s usage and meaning.

Symbol NameUsed ForExample
$X$, $Y$, $Z$, $T$Random variables$E(X_1 + X_2) =$
$E(X_1) + E(X_2)$
$x$, $y$, $z$, $t$Values of random variableFor all $x \in \mathbb{N}_0$, $P(X=x) =$
$(0.25)^x (0.75).$
$n$Sample size$\overline{X}_n = \\ \displaystyle \frac{X_1 + \, \cdots \, + X_n}{n}$
$f$Frequency of data$f_1 + \cdots + f_k = n$
$\mu$
(Mu)
Population mean$H_0\!: \mu_1 = \mu_2$
$\sigma$
(Sigma)
Population standard deviation$\sigma_X = \\ \sqrt{\dfrac{\sum (X_i-\mu_x \vphantom{\overline{A}})^2}{n} }$
$s$Sample standard deviation$s = \\ \sqrt{ \dfrac{\sum (X_i-\overline{X})^2}{n-1} }$
$\pi$
(Pi)
Population proportion$H_a\! : \pi_1 \ne \pi_2$
$\hat{p}$Sample proportionIf $\pi_1 = \pi_2$, use $\hat{p} = \dfrac{x_1 + x_2}{n_1+n_2}$ instead of $\hat{p}_1$ or $\hat{p}_2$.
$p$Probability of successIn a standard die-tossing experiment, $p=\dfrac{1}{6}$.
$q$Probability of failure$q = 1-p$
$\rho$
(Rho)
Population correlation$\rho_{X, X} = 1$
$r$Sample correlation$r_{xy}=r_{yx}$
$z$Z-score$z = \dfrac{x-\mu}{\sigma}$
$\alpha$
(Alpha)
Significance level
(probability of type I error)
At $\alpha=0.05$, the null hypothesis is rejected, but not at $\alpha = 0.01$.
$\beta$
(Beta)
Probability of type II error$P(H_0 \,\mathrm{rejected} \mid$
$H_0 \,\mathrm{false}) = 1-\beta$
$b$Sample regression coefficient$y=b_0 + b_1x_1 + \\ b_2x_2$
$\beta$
(Beta)
Population regression coefficient, Standardized regression coefficientIf $\beta_1 = 0.51$ and $\beta_2=0.8$, then $x_2$ has more “influence” on $y$ than $x_1$.
$\nu$
(Nu)
Degree of freedom (df)$\mathrm{Gamma} (\nu / 2, 1 / 2)$
$= \chi^2 (\nu)$
$\Omega$
(Capital omega)
Sample spaceFor a double-coin-toss experiment, $\Omega = \{\mathrm{HH}, \mathrm{HT}, \mathrm{TH},$
$\mathrm{TT} \}.$
$\omega$
(Omega)
Outcome from sample space$P(X \in A) =$
$P\big(\{ \omega \in \Omega \mid$
$X(\omega) \in A\} \big)$
$\theta$ (Theta), $\beta$ (Beta)Population parametersFor normal distributions, $\theta =(\mu, \sigma)$.

Operators

In probability and statistics, operators denote mathematical operations which are used to better make sense of data and chances. These include key combinatorial operators, probability-related operators/functions, probability distributions and statistical operators.

Combinatorial Operators

Symbol NameExplanationExample
$n!$Factorial$4! = 4 \cdot 3 \cdot 2 \cdot 1$
$n!!$Double factorial$8!! = 8 \cdot 6 \cdot 4 \cdot 2$
$!n$Number of derangements of $n$ objectsSince $\{a, b, c \}$ has $2$ permutations where all letter positions are changed, $!3 = 2$.
$nPr$Permutation
($n$ permute $r$)
$6P\,3 = 6 \cdot 5 \cdot 4$
$nCr$, $\displaystyle \binom{n}{r}$Combination
($n$ choose $r$)
$\displaystyle \binom{n}{k} = \displaystyle \binom{n}{n-k}$
$\displaystyle \binom{n}{r_1, \ldots, r_k}$Multinomial coefficient$\displaystyle \binom{10}{5, 3, 2} = \dfrac{10!}{5! \, 3! \, 2!}$
$\displaystyle \left(\!\!\binom{n}{r}\!\!\right)$Multiset coefficient
($n$ multichoose $r$)
From a 5-element-set, $\left(\!\binom{5}{3}\!\right)$ 3-element-multisets can be taken.

Probability-related Operators

The following are some of the most notable operators related to probability and random variables. For a review on sets, see set operators.

Symbol NameExplanationExample
$P(A)$, $\mathrm{Pr}(A)$Probability of event $A$$P(X \ge 5) =$
$1-P(X < 5)$
$P(A’)$, $P(A^c)$Complementary probability
(Probability of ‘not $A$’)
For all events $E$, $P(E)+P(E’)=1$.
$P(A \cup B)$Disjunctive probability
(Probability of ‘$A$ or $B$’)
$P(A \cup B) \ge$
$\max\left( P(A), P(B) \right)$
$P (A \cap B)$Joint probability
(Probability of ‘$A$ and $B$’)
Events $A$ and $B$ are mutually exclusive when $P(A \cap B)=0$.
$P(A \,|\, B)$Conditional probability
(Probability of ‘$A$ given $B$’)
$P(A \,|\, B) = \\ \dfrac{P(A \cap B)}{P(B)}$
$E[X]$Mean / Expected value of random variable $X$$E[2 f(X) + 5] =$
$2 E[f(X)] + 5$
$E[X \, | \, Y]$Conditional expectation
(Expected value of $X$ given $Y$)
$E[X \,|\, Y =1] \ne$
$E[X \, | \, Y=2]$
$V(X), \mathrm{Var}(X)$Variance of random variable $X$$V(X) = E[X^2] \, +$
$E[X]^2$
$V(X\, | \, Y), \\ \mathrm{Var}(X \,|\,Y)$Conditional variance
(Variance of $X$ given $Y$)
$V[X \, | \, Y] =$
$E[\left(X-E[X \, | \, Y] \right)^2 \, | \, Y]$
$\sigma(X)$, $\mathrm{Std}(X)$Standard deviation of random variable $X$$\sigma(-2X) = \\ |\!-2|\, \sigma(X)$
$\mathrm{Skew}[X]$Moment coefficient of skewness of $X$$\mathrm{Skew}[X]=$
$\displaystyle E\left[\left(\frac{X-\mu}{\sigma}\right)^3 \right]$
$\mathrm{Kurt}[X]$Kurtosis of random variable $X$$\mathrm{Kurt}[X]=$
$\displaystyle E\left[\left(\frac{X-\mu}{\sigma}\right)^4 \right]$
$\mu_n(X)$nth central moment of random variable $X$$\mu_n(X) =$
$E[(X-E[X])^n]$
$\tilde{\mu}_n(X)$nth standardized moment of random variable $X$$\tilde{\mu}_n(X) =$
$\displaystyle E\left[\left(\frac{X – \mu}{\sigma}\right)^n\right]$
$\sigma(X, Y)$,
$\mathrm{Cov}(X, Y)$
Covariance of random variables $X$ and $Y$$\mathrm{Cov}(X, Y) =$
$\mathrm{Cov}(Y, X)$
$\rho (X, Y)$, $\mathrm{Corr}(X, Y)$Correlation of random variables $X$ and $Y$$\rho (X, Y) = \\ \dfrac{\mathrm{Cov}(X, Y)}{\sigma(X)\,\sigma(Y)}$

Probability-related Functions

Symbol NameExplanationExample
$f_X(x)$Probability mass function (pmf) / probability density function (pdf)$P(Y \le 2) =$
$\displaystyle \int_{-\infty}^2 f_Y(y) \,\mathrm{d}y$
$R_X$Support of random variable $X$$R_X = \{ x \in \mathbb{R} \mid$
$f_X(x)>0 \}$
$F_X(x)$Cumulative distribution function (cdf) of random variable $X$$F_X(5)=P(X\le 5)$
$\overline{F}(x), S(x)$Survival function of random variable $X$$S(t) = 1-F(t)$
$f(x_1, \ldots, x_n)$Joint probability function of random variables $X_1, \ldots, X_n$$f(1, 2) =$
$P(X = 1, Y = 2)$
$F(x_1, \ldots, x_n)$Joint cumulative distribution function of random variables $X_1, \ldots, X_n$$F(x, y) =$
$P (X \le x, Y \le y)$
$M_X(t)$Moment-generating function of random variable $X$$M_X(t)=E[e^{tX}]$
$\varphi_X(t)$Characteristic function of random variable $X$$\varphi_X(t)=E[e^{itX}]$
$K_X(t)$Cumulant-generating function of random variable $X$$K_X(t)= \ln \left( E[e^{tX}] \right)$
$\mathcal{L}(\theta \mid x)$Likelihood function of random variable $X$ with parameter $\theta$If $X \sim \mathrm{Geo}(p)$, then $\mathcal{L}(\theta \mid X = 3) =$
$P(X = 3 \mid p = \theta).$

Probability-distribution-related Operators

Discrete Probability Distributions

Symbol NameExplanationExample
$U \{ a,b \}$Discrete uniform distribution from $a$ to $b$Let $X$ be the number on a die following its toss, then $X \sim U\{1, 6\}$.
$\mathrm{Ber}(p)$Bernoulli distribution with $p$ probability of successIf $X \sim \mathrm{Ber}(0.5)$, then $P(X=0) =$
$P(X=1) = 0.5.$
$\mathrm{Geo}(p)$Geometric distribution with $p$ probability of successIf $X \sim \mathrm{Geo}(p)$, then $E[X]=\dfrac{1}{p}$.
$\mathrm{Bin}(n, p)$Binomial distribution with $n$ trials and $p$ probability of successLet $X$ be the number of heads in a 5-coin toss, then $X \sim \mathrm{Bin}(5, 0.5)$.
$\mathrm{NB}(r, p)$Negative binomial distribution with $r$ successes and $p$ probability of successLet $Y$ be the number of die rolls needed to get the third six, then $Y \sim \mathrm{NB}(3, 1/6)$.
$\mathrm{Poisson}(\lambda)$Poisson distribution with rate $\lambda$If $X \sim \mathrm{Poisson}(5)$, then $E[X]=V[X]$
$= 5$.
$\mathrm{Hyper}(N, K, n)$Hypergeometric distribution with $n$ draws and $K$ favorable items among $N$If $X \sim$
$\mathrm{Hyper}(N, K, n)$, then $E[X] = n \dfrac{K}{N}$.

The following graphs illustrate the probability mass functions of 6 of the key distributions mentioned above.

  • List of Probability and Statistics Symbols | Math Vault (2)
  • List of Probability and Statistics Symbols | Math Vault (3)
  • List of Probability and Statistics Symbols | Math Vault (4)
  • List of Probability and Statistics Symbols | Math Vault (5)
  • List of Probability and Statistics Symbols | Math Vault (6)
  • List of Probability and Statistics Symbols | Math Vault (7)

Continuous Probability Distributions and Associated Functions

Symbol NameExplanationExample
$U(a, b)$Continuous uniform distribution from $a$ to $b$If $X \sim U(5,15)$, then $\displaystyle P(X \le 6) = \frac{1}{10}$.
$\mathrm{Exp}(\lambda)$Exponential distribution with rate $\lambda$If $Y \sim \mathrm{Exp}(5)$, then $E[Y] = \sigma[Y] = \dfrac{1}{5}$.
$N(\mu, \sigma^2)$Normal distribution with mean $\mu$ and standard deviation $\sigma$If $X \sim N(1, 5^2)$, then $2X + 3 \sim N(5,10^2)$.
$Z$Standard normal distribution$Z \sim N(0, 1)$
$\varphi(x)$Pdf of standard normal distribution$\varphi(x) = \dfrac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$
$\Phi(x)$Cdf of standard normal distribution$\Phi(z) = P (Z \le z)$
$\mathrm{erf}(x)$Error function$\mathrm{erf}(x) =$
$\displaystyle \dfrac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} \, dt$
$z_{\alpha}$Positive Z-score associated with significance level $\alpha$$z_{0.025} \approx 1.96$
$\mathrm{Lognormal}(\mu, \sigma^2)$Lognormal distribution with parameters $\mu$ and $\sigma$If $Y \sim$
$\mathrm{Lognormal}(\mu, \sigma^2)$, then $\ln Y = N(\mu, \sigma^2).$
$\mathrm{Cauchy}(x_0, \gamma)$Cauchy distribution with parameters $x_0$ and $\gamma$If $X \sim \mathrm{Cauchy}(0, 1)$, then $f(x)=$
$\dfrac{1}{\pi(x^2+1)}$.
$\mathrm{Beta}(\alpha, \beta)$Beta distribution with parameters $\alpha$ and $\beta$If $X \sim \mathrm{Beta}(\alpha, \beta)$, then $f(x) \propto$
$x^{\alpha-1}(1-x)^{\beta-1}$.
$\mathrm{B}(x, y)$Beta function$\mathrm{B}(x, y) =$
$\displaystyle \int_0^1 t^{x-1} (1-t)^{y-1} \mathrm{d}t$
$\mathrm{Gamma}(\alpha, \beta)$Gamma distribution with parameters $\alpha$ and $\beta$$\mathrm{Gamma}(1, \lambda) =$
$\mathrm{Exp}(\lambda)$
$\Gamma(x)$Gamma functionFor all $n \in \mathbb{N}_+$, $\Gamma(n)=(n-1)!$.
$T (\nu)$T-distribution with degree of freedom $\nu$$T (n-1)= \dfrac{\overline{X}-\mu}{\dfrac{S}{\sqrt{n}}}$
$t_{\alpha, \nu}$Positive t-score with significance level $\alpha$ and degree of freedom $\nu$$t_{0.05, 1000} \approx z_{0.05}$
$\chi^2 (\nu)$Chi-squared distribution with degree of freedom $\nu$$Z_1^2 + \cdots + Z_k^2 = \\ \chi^2 (k)$
$\chi^2_{\alpha, \nu}$Chi-squared score with significance level $\alpha$ and degree of freedom $\nu$$\chi^2_{0.05, 30} = 43.77$
$F(\nu_1, \nu_2)$F-distribution with degrees of freedom $\nu_1$ and $\nu_2$If $X \sim T(\nu)$, then $X^2 \sim F(1, \nu)$.
$F_{\alpha, \nu_1, \nu_2}$F-score with significance level $\alpha$ and degrees of freedom $\nu_1$ and $\nu_2$$F_{0.05, 20, 20} \approx 2.1242$

Statistical Operators

Symbol NameExplanationExample
$X_i$, $x_i$I-th value of data set $X$$x_5 = 9$
$\overline{X}$Sample mean of data set $X$$\displaystyle \overline{X} = \frac{ \sum X_i}{n}$
$\widetilde{X}$Median of data set $X$For a negatively-skewed distribution, $\overline{X} \le \widetilde{X}$.
$Q_i$I-th quartile$Q_3$ is also the 75th (empirical) percentile.
$P_i$I-th percentile$P(X \le P_{95}) = 0.95$
$s_i$Sample standard deviation of i-th sample$s_1 > s_2$
$\sigma_i$Population standard deviation of i-th sampleIf $\sigma_1 = \sigma_2$, then $\sigma_1^2 = \sigma_2^2$.
$s^2$Sample variance$s^2 = \displaystyle \frac{\sum (X_i-\overline{X})^2}{n-1}$
$s_p^2$Pooled sample variance$s_p^2 = \\ \frac{(n_1-1)s_1^2 \, + \, (n_2-1)s_2^2}{n_1 \, + \, n_2-\,2}$
$\sigma^2$Population varianceIf $\sigma_1^2 = \sigma_2^2$, use pooled variance as a better estimate.
$r^2$, $R^2$Coefficient of determination$R^2 = \dfrac{SS_{\mathrm{regression}}}{SS_{\mathrm{total}}}$
$\eta^2$Eta-squared
(Measure of effect size)
$\eta^2 = \dfrac{SS_{\mathrm{treatment}}}{SS_{\mathrm{total}}}$
$\hat{y}$Predicted average value of $y$ in regression$\hat{y}_0=a + bx_0$
$\hat{\varepsilon}$Residual in regression$\hat{\varepsilon}_i=y_i-\hat{y}_i$
$\hat{\theta}$Estimator of parameter $\theta$If $E(\hat{\theta})=\theta$, then $\hat{\theta}$ is an unbiased estimator of $\theta$.
$\mathrm{Bias}(\hat{\theta}, \theta)$Bias of estimator $\hat{\theta}$ with respect to parameter $\theta$$\mathrm{Bias}(\hat{\theta}, \theta) = \\ E[\hat{\theta}]-\theta$
$X_{(k)}$K-th order statistics$X_{(n)} =$
$\max \{ X_1, \ldots, X_n \}$

Relational Symbols

Relational symbols are symbols used to denote mathematical relations, which express some connection between two or more mathematical objects or entities. The following table documents the most notable of these in the context of probability and statistics — along with each symbol’s usage and meaning.

Symbol NameExplanationExample
$A \perp B$Events $A$ and $B$ are independentIf $A \perp B$ and $P(A) \ne 0$, then $P(B \mid A) = P(B)$.
$(A \perp B) \mid C$Conditional independence
($A$ and $B$ are independent given $C$)
$(A \perp B) \mid C \iff$
$P(A \cap B \mid C) =$
$P(A \mid C) \, P(B \mid C)$
$A \nearrow B$Event $A$ increases the likelihood of event $B$If $E_1 \nearrow E_2$, then $P(E_2 \,|\, E_1) \ge P(E_2)$.
$A \searrow B$Event $A$ decreases the likelihood of event $B$If $A \searrow B$, then $A \nearrow B^c$.
$X \sim F$Random variable $X$ follows probability distribution $F$If $X_1, \ldots, X_n \sim$
$\mathrm{Ber}(p)$, then $X_1 + \cdots + X_n \sim$
$\mathrm{Bin}(n, p)$.
$X \approx F$Random variable $X$ approximately follows probability distribution $F$$X_1 + \cdots + X_n \approx$
$N(n\mu, n\sigma^2)$

Notational Symbols

Notational symbols are often conventions or acronyms that don’t fall into the categories of constants, variables, operators and relational symbols. The following table documents some of the most common notational symbols in probability and statistics — along with their respective usage and meaning.

Symbol NameExplanationExample
$IQR$Interquartile range$IQR = Q_3-Q_1$
$SD$Standard deviation$2 \, SD = 2 \cdot 1.5 = 3$
$CV$Coefficient of variation$CV = \dfrac{\sigma}{\mu}$
$SE$Standard errorA statistic of $5.66$ corresponds to $10\, SE$ away from the mean.
$SS$Sum of squares$SS_{y}= \\ \displaystyle \sum (Y_i-\overline{Y} )^2$
$MSE$Mean square errorFor linear regression, $\displaystyle MSE = \frac{\sum (Y_i – \hat{Y}_i)^2}{n-2}.$
$OR$Odds ratioLet $p_1$ and $p_2$ be the rates of accidents in two regions, then $OR = \dfrac{p_1 / (1-p_1)}{p_2 / (1-p_2)}$.
$H_0$Null hypothesis$H_0\!: \sigma^2_1 = \sigma^2_2$
$H_a$Alternative hypothesis$H_a\!: \rho > 0$
$\mathrm{CI}$Confidence interval$95\% \, \mathrm{CI} = \\ (0.85, 0.97)$
$\mathrm{PI}$Prediction interval$90\%\, \mathrm{PI}$ is wider than $90\% \, \mathrm{CI}$, as it predicts an instance of $y$ rather than its average.
$\mathrm{r.v.}$Random variableA r. v. is continuous if its support consists of a union of disjoint intervals.
$\mathrm{i. i. d.}$Independent and identically distributed random variablesIf $X_1, \ldots, X_n$ are i.i.d. with $V[X_i]=\sigma^2$, then $V[\overline{X}] = \dfrac{\sigma^2}{n}$.
$\mathrm{LLN}$Law of large numbersLLN shows that for all $\varepsilon >0$, as $n \to \infty$, $P\left(|\overline{X}_n-\mu|>\varepsilon\right) \to 0.$
$\mathrm{CLT}$Central limit theoremBy CLT, as $n \to \infty$, $\dfrac{\overline{X}_n-\mu}{\sigma / \sqrt{n}} \to Z$.

For the master list of symbols, see mathematical symbols. For lists of symbols categorized by subject and type, refer to the relevant pages below for more.

  • Arithmetic and Common Math Symbols
  • Geometry and Trigonometry Symbols
  • Logic Symbols
  • Set Theory Symbols
  • Greek, Hebrew, Latin-based Symbols
  • Algebra Symbols
  • Probability and Statistics Symbols
  • Calculus and Analysis Symbols
List of Probability and Statistics Symbols | Math Vault (8)

Prefer the PDF version instead?

Get the master summary of mathematical symbols in eBook form — along with each symbol’s usage and LaTeX code.

Yes. That’d be useful.

Additional Resources

  • Definitive Guide to Learning Higher Mathematics: A standalone, 10-principle framework for tackling higher mathematical learning, thinking and problem solving efficiently
  • Ultimate LaTeX Reference Guide: Definitive reference guide to make the LaTeXing process more efficient and less painful
  • Biostatistics for Health Science — Review Sheet: A summary of an entire semester of introductory biostatistics in 5 pages
  • Definitive Glossary of Higher Math Jargon: A tour around higher mathematics in 106 terms
« Previous PageAlgebra SymbolsNext Page »Calculus and Analysis Symbols

Leave a Reply

  1. This is a heck of a guide!

    Reply

    1. Thank you Kubet. Glad you like it!

      Reply

List of Probability and Statistics Symbols | Math Vault (2024)

FAQs

List of Probability and Statistics Symbols | Math Vault? ›

p = probability value.

What are the symbols in statistics and probability? ›

List of Probability and Statistics Symbols
SymbolSymbol NameExample
P(A ∩ B)probability of events intersectionP(A∩B) = 0.5
P(A)probability functionP(A) = 0.5
P(A | B)conditional probability functionP(A | B) = 0.3
P(A ∪ B)probability of events unionP(A∪B) = 0.5
35 more rows

What are the P symbols in stats? ›

p = probability value.

What does the ∩ symbol mean in probability? ›

The symbol we use for the intersection is ∩. The word that you will often see that indicates an intersection is "and".

What is the hierarchy of math symbols? ›

The order is PEMDAS: Parentheses, Exponents, Multiplication, and Division (from left to right), Addition and Subtraction (from left to right). Is there a trick we can use to remember the order of operations?

What is the ∈ in statistics? ›

ε: “Error term” in regression/statistics; more generally used to denote an arbitrarily small, positive number. ∈ (Variant Epsilon) This version of epsilon is used in set theory to mean “belongs to” or “is in the set of”: x ∈ X; similarly used to indicate the range of a parameter: x ∈ [0, 1].

What is the symbol ∑ in statistics? ›

The symbol Σ (capital sigma) is often used as shorthand notation to indicate the sum of a number of similar terms. Sigma notation is used extensively in statistics.

What is μ in statistics? ›

The symbol 'μ' represents the population mean.

What is μ and p in statistics? ›

The population mean (the greek letter "mu") and the population proportion p are two different population parameters. For example: We might be interested in learning about , the average weight of all middle-aged female Americans. The population consists of all middle-aged female Americans, and the parameter is µ.

What is the p and Z in statistics? ›

P-values are used to determine the probability of obtaining a result as extreme or more extreme than the observed result, assuming that the null hypothesis is true. On the other hand, Z-scores are used to determine how many standard deviations a data point is from the mean.

What does ⊆ mean in probability? ›

The symbol "⊆" means "is a subset of". The symbol "⊂" means "is a proper subset of". Example. Since all of the members of set A are members of set D, A is a subset of D. Symbolically this is represented as A ⊆ D.

What do the U symbols mean in probability? ›

A union is communicated using the symbol ∪. P ( A ∪ B ) is read as "the probability of A or B." Note that in mathematics, "or" means "and/or." The Venn diagram below depicts the union of A and B.

What is aub in probability? ›

The symbol "∪" (union) means "or". i.e., P(A∪B) is the probability of happening of the event A or B. To find, P(A∪B), we have to count the sample points that are present in both A and B.

What does ∈ mean in math? ›

The symbol ∈ indicates set membership and means “is an element of” so that the statement x∈A means that x is an element of the set A. In other words, x is one of the objects in the collection of (possibly many) objects in the set A.

What does ∧ mean in math? ›

∧ is (most often) the mathematical symbol for logical conjunction, which is equivalent to the AND operator you're used to. Similarly ∨ is (most often) logical disjunction, which would be equivalent to the OR operator.

What are the 5 mathematical symbols? ›

The 11 basic symbols essential for writing mathematical equations are the plus (+), minus (-), equals (=), does not equal (≠), multiplication (×), division (÷), greater than (>), less than (<), greater than or equal to (≥), less than or equal to (≤), fraction (/), decimal (.) and percent (%) symbols.

What are the 4 types of probability in statistics? ›

Four perspectives on probability are commonly used: Classical, Empirical, Subjective, and Axiomatic.

What is this symbol x̅? ›

The x bar (x̄) symbol is used in statistics to represent the sample mean, or average, of a set of values. It's calculated by adding up all the numbers in the sample and then dividing by the number of values in that sample.

What does σ mean in probability? ›

The unit of measurement usually given when talking about statistical significance is the standard deviation, expressed with the lowercase Greek letter sigma (σ). The term refers to the amount of variability in a given set of data: whether the data points are all clustered together, or very spread out.

Top Articles
Latest Posts
Article information

Author: Gregorio Kreiger

Last Updated:

Views: 5833

Rating: 4.7 / 5 (57 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Gregorio Kreiger

Birthday: 1994-12-18

Address: 89212 Tracey Ramp, Sunside, MT 08453-0951

Phone: +9014805370218

Job: Customer Designer

Hobby: Mountain biking, Orienteering, Hiking, Sewing, Backpacking, Mushroom hunting, Backpacking

Introduction: My name is Gregorio Kreiger, I am a tender, brainy, enthusiastic, combative, agreeable, gentle, gentle person who loves writing and wants to share my knowledge and understanding with you.